Array processing and statistical modelling for the detection and classification of seismic events

Paul Bui Quang
joint work with
Pierre Gaillard, Yoann Cano

CEA / DAM Ile-de-France
Laboratory of Detection and Geophysics
Low level signal processing: **detection** of any coherent wavefront crossing an array → many detections (including coherent noise)

Hence the need to **classify** detections thanks to higher level statistical modelling
PMCC: array processing for seismic (and infrasound) event monitoring

Progressive increase of array aperture

Estimation of parameters in elementary time-frequency domains

- propagation (speed, azimuth)
- energy (consistency)
HMMs are a powerful machine learning tool

Applications:

- speech recognition (Rabiner, 1989)
- seismic signal processing (Ohrnberger, 2001)

Beyreuther et al., 2008

Word “dry” (2.7s)

Earthquake (37s)
Hidden Markov models
Definition

HMM: time series statistical model

- \((X_t)_t\) Markov chain, hidden state of the system
- \(X_t\) takes discrete values \(\{1, \ldots, N\}\)
- \((Y_t)_t\) observation sequence
- likelihood: mapping \(\theta \mapsto \ell_\theta((Y_t)_t)\), where \(\ell_\theta(\cdot)\) is the observation density
Feature extraction

The raw signal is transformed into a sequence of observations

The observation sequence is modelled by a HMM

observation $Y_t = \text{vector of features}$
Let a and b be two event classes

Training data: $(Y_t^a)_t, (Y_t^b)_t$

Training consists in maximum likelihood estimation

$$\hat{\theta}^a = \arg\max_{\theta} \{\ell_{\theta}((Y_t^a)_t)\}$$
$$\hat{\theta}^b = \arg\max_{\theta} \{\ell_{\theta}((Y_t^b)_t)\}$$

Test data (unknown class): $(Y_t^?)_t$

Test event classified as:

- a if $\ell_{\hat{\theta}^a}((Y_t^?)_t) > \ell_{\hat{\theta}^b}((Y_t^?)_t)$
- b otherwise
Classification of seismic events
Study case

IMS seismic array station of Songino (Mongolia)

Classes:
• regional events
• teleseismic events
• noise

• 7821 PMCC detections
• 121 regional events
• 121 teleseismic events

Test data: September 1—2, 2008
• 3740 PMCC detections
• 23 regional events
• 53 teleseismic events

Event bulletin provided by RCAG
Classification of seismic events
Choice of features

Trajectory distribution of two discriminating features

spectral energy (log) 0.8—3Hz

PMCC consistency (log)
Classification of seismic events

Experiment results

<table>
<thead>
<tr>
<th></th>
<th>Regional</th>
<th>Teleseismic</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>93%</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Teleseismic</td>
<td>2%</td>
<td>89%</td>
<td>8%</td>
</tr>
<tr>
<td>Noise</td>
<td>6%</td>
<td>4%</td>
<td>90%</td>
</tr>
</tbody>
</table>

Training data

<table>
<thead>
<tr>
<th></th>
<th>Regional</th>
<th>Teleseismic</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>83%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Teleseismic</td>
<td>2%</td>
<td>83%</td>
<td>15%</td>
</tr>
<tr>
<td>Noise</td>
<td>5%</td>
<td>9%</td>
<td>86%</td>
</tr>
</tbody>
</table>

Test data
Classification of seismic events
Experiment results (cont.)

Correct classification
False classification
Classification of seismic events
Experiment results (cont.)

Correct classification
False event classification
(regional <-> teleseismic)
False noise classification
Conclusion

classification scores: regional event, teleseismic event, noise

PMCC detection + HMM classification: promising association for automatic seismic analysis
Some references

• P. Bui Quang, P. Gaillard, Y. Cano, M. Ulzibat. Detection and classification of seismic events with progressive multi-channel correlation and hidden Markov models. [Submitted]