Abstract:
With the installation of the International Monitoring System (IMS) hydroacoustic stations, recent (June 2005) tsunami activities have been monitored primarily by the tsunami detection system. The purpose of this study is to report on the performance of the tsunami detection system for the reported tsunamis. For the past several years, we have been investigating the use of hydroacoustic data from the IMS stations for the detection of tsunamis. The key to this study is the postulated secondary source for the tsunami in the Aceh province of Indonesia.

Walker et al. (1969) studied Tsunamis from multiple, large earthquakes, some of which cause seismic waves that are much higher in frequency (approximately 0.2 Hz). Using data recorded at the mid-Japan hydroacoustic station at Diego Garcia for several recent tsunamis (e.g., Northern Sumatra, Nias Islands; 2004), we have demonstrated that the tsunamis that produce significant tsunami waves are much lower in frequency than the tsunami waves that are recorded at the mid-Japan station.

The key to this study is the postulated secondary source for the tsunami in the Aceh province of Indonesia. The seismic data from the IMS stations have been used to study the tsunami in the Aceh province of Indonesia. The evidence for the secondary source is based on the amplitude and timing of the tsunami.

Walker et al. (1969) hypothesized that the higher frequency energy of the observed tsunami of the mid-Japan station may be the result of an alternate mechanism for generating tsunamis, such as subduction/trench-like, or other processes. They also suggested that the lower frequency energy of the observed tsunami of the mid-Japan station may be the result of a secondary source mechanism.

Walker et al. (1969) hypothesized that the higher frequency energy of the observed tsunami of the mid-Japan station may be the result of an alternate mechanism for generating tsunamis, such as subduction/trench-like, or other processes. They also suggested that the lower frequency energy of the observed tsunami of the mid-Japan station may be the result of a secondary source mechanism. The evidence for the secondary source is based on the amplitude and timing of the tsunami.

The key to this study is the postulated secondary source for the tsunami in the Aceh province of Indonesia. The evidence for the secondary source is based on the amplitude and timing of the tsunami.

Walker et al. (1969) hypothesized that the higher frequency energy of the observed tsunami of the mid-Japan station may be the result of an alternate mechanism for generating tsunamis, such as subduction/trench-like, or other processes. They also suggested that the lower frequency energy of the observed tsunami of the mid-Japan station may be the result of a secondary source mechanism. The evidence for the secondary source is based on the amplitude and timing of the tsunami.

Walker et al. (1969) hypothesized that the higher frequency energy of the observed tsunami of the mid-Japan station may be the result of an alternate mechanism for generating tsunamis, such as subduction/trench-like, or other processes. They also suggested that the lower frequency energy of the observed tsunami of the mid-Japan station may be the result of a secondary source mechanism. The evidence for the secondary source is based on the amplitude and timing of the tsunami.

Walker et al. (1969) hypothesized that the higher frequency energy of the observed tsunami of the mid-Japan station may be the result of an alternate mechanism for generating tsunamis, such as subduction/trench-like, or other processes. They also suggested that the lower frequency energy of the observed tsunami of the mid-Japan station may be the result of a secondary source mechanism. The evidence for the secondary source is based on the amplitude and timing of the tsunami.

Walker et al. (1969) hypothesized that the higher frequency energy of the observed tsunami of the mid-Japan station may be the result of an alternate mechanism for generating tsunamis, such as subduction/trench-like, or other processes. They also suggested that the lower frequency energy of the observed tsunami of the mid-Japan station may be the result of a secondary source mechanism. The evidence for the secondary source is based on the amplitude and timing of the tsunami.

Walker et al. (1969) hypothesized that the higher frequency energy of the observed tsunami of the mid-Japan station may be the result of an alternate mechanism for generating tsunamis, such as subduction/trench-like, or other processes. They also suggested that the lower frequency energy of the observed tsunami of the mid-Japan station may be the result of a secondary source mechanism. The evidence for the secondary source is based on the amplitude and timing of the tsunami.