Improving the Regional Seismic Travel Time (RSTT) Model Through International Outreach

Stephen C. Myers¹
Michael L. Begnaud²
Rengin Gok¹
Federico Guendel⁴
Sanford Ballard³
Martin Kalinowski⁴

Abelardo L. Ramirez¹, Michael E. Pasyanos¹, W. Scott Phillips², and other RSTT team members

¹Lawrence Livermore National Laboratory, ²Los Alamos National Laboratory, ³Sandia National Laboratories
⁴Comprehensive Nuclear-Test-Ban Treaty Organization

Presented at the CTBTO SnT 2015
Vienna, Austria
June, 2015

The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, or Sandia National Laboratories.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
The views expressed in this presentation do not necessarily reflect those of the CTBTO.
What is RSTT?

RSTT is a method to predict travel times for regional phases (Pn, Pg, Sn, and Lg)

- Regional distance is between ~150 km and 1600 km
- Regional phases travel in the crust and upper mantle
- Signals are larger amplitude than signals at greater distance (enhanced detection).

IASPEI definitions for phases computed by RSTT

Example regional signal

IASPEI is the International Association of Seismology and Physics of the Earth’s Interior
What does RSTT do?

- Travel time prediction errors are higher at regional distances than at other distances.
- Using regional data often increases epicenter error.
- RSTT reduces travel-time prediction errors to levels comparable to those observed at teleseismic distances.

Modified from Rodi and Myers (2013), Geophys. Jour. Int., 194, 1582-1595
doi: 10.1093/gji/ggt171Geophys
How does RSTT reduce prediction errors?

- The RSTT model reduces travel time prediction error by accounting for 3-dimensional Earth structure.
- The model is built on a global, triangular tessellation with independent velocity profiles at each node.

Interpolation of layer depths and velocities renders a 3-dimensional crust overlaying a mantle with laterally varying seismic wave speed.
RSTT travel times are computed in approximately a millisecond

- The RSTT travel time calculation is relatively simple.
- No ray tracing!

\[TT = \sum_{i=1}^{N} d_i s_i + \alpha + \beta + \gamma \]

\[\gamma = \frac{c^2 X_m^3}{24 V_0} \]

Model cross section and representative Pn ray path

\(d = \) path increment immediately below crust/mantle boundary.
\(s = 1/\text{velocity} \)
\(\alpha = \) source-side portion of ray
\(\beta = \) receiver-side portion of ray
Tomography is used to adjust model parameters for optimal travel time predictions

- RSTT tomography adjusts
 - Mantle velocity
 - At the Moho
 - Gradient
 - Crustal slowness

Tomographic system of equations

\[
\begin{bmatrix}
\frac{x_1^1}{24V_oX_m} & \cdots & \frac{x_1^N(X_m)^3}{24V_oX_m} & \frac{Q}{\sum_{p=1}^{N_p} t_{1p}} & \cdots & \frac{Q}{\sum_{p=1}^{N_p} t_{Np}} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
\frac{x_N^K}{24V_oX_m} & \cdots & \frac{x_N^K(X_m)^3}{24V_oX_m} & \frac{Q}{\sum_{p=1}^{N_p} t_{1p}} & \cdots & \frac{Q}{\sum_{p=1}^{N_p} t_{Np}} \\
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
s_1 \\
\vdots \\
s_N \\
\end{bmatrix} \\
\begin{bmatrix}
t_1 \\
\vdots \\
t_N \\
\end{bmatrix} \\
\begin{bmatrix}
c_1 \\
\vdots \\
c_N \\
\end{bmatrix} \\
\begin{bmatrix}
a_1 \\
\vdots \\
a_N \\
\end{bmatrix}
\end{bmatrix}
\]
RSTT workshops introduce regional experts to the RSTT model and methods

Participating Countries to date (66)

Algeria Algeria Argentina Australia Armenia Azerbaijan Bahamas Bolivia Brazil Cameroon Chad Chile Columbia Comoros Congo Cook Islands Costa Rica Djibouti Dominican Republic Ecuador Egypt Ethiopia Fiji France Georgia Ghana Guatemala Haiti Hungary Iraq Ireland Italy Jamaica Jordan Kazakhstn Kyrgyzstan Libya Malaysia Madagascar Mexico Micronesia Mongolia Morocco Mozambique Nauru New Zealand Norway Panama Peru Papua New Guinea Philippines Samoa Solomon Islands South Africa South Korea Tajikistan Tanzania Tonga Tunisia Turkmenistan Uganda United Kingdom United States Uzbekistan Vanuatu Venezuela Zambia

San Juan, Argentina

Almaty, Kazakhstan
Typical training agenda

- Introduction to the RSTT model and method
- Utility of RSTT to CTBTO, NDCs and national networks
- The need for model and data contributions
- Location examples using the ISC locator
- Instruction in how to extract and modify RSTT model parameters
- Hands-on exercises involving
 - Calculation of travel times using the RSTT code
 - Extraction and modification of RSTT model parameters
 - Event relocation
- Review of data contributed during the workshop

Evening activities during RSTT workshop in San Juan, Argentina
Studies of local/regional structure can be incorporated into the RSTT model.

- Crustal thickness is generally not resolved by RSTT tomographic data sets.
- Significant updates to crustal thickness were incorporated into the RSTT model as a result of workshops in South America.

Contributed by M. Assumpcao
Data coverage is significantly improved by contributions provided at RSTT workshops.
RSTT data coverage is good in continents
... holes in continental data coverage remain
Summary

- RSTT provides an extensible framework to provide accurate travel time calculations for Pn, Pg, Sn, and Lg phases.
- Millisecond computational time removes the need for pre-computation of travel time corrections
 - Enables use with a flexible network, e.g., national networks
- CTBTO outreach efforts and workshops
 - Training for RSTT use with the ISC locator
 - Contribution of local and regional models
 - Contribution of data for improved tomography.
 - Contributed to the ISC ground-truth database.
- The RSTT model is a work in progress
 - Further efforts can significantly improve RSTT prediction