A Bayesian Algorithm for Assessing Uncertainty in Radionuclide Source Terms

Dr. Peter Robins
Content

- Inference Algorithm
- NPE 2013 Inference (Simulated data)
- Fukushima Inference (Real data)
- Future
Input data

- CTBTO Radionuclide sensor data
 - 24h integrated Measurements and “Minimum detectable concentrations” for a number of isotopes

- CTBTO Atmospheric Transport Modelling (ATM) dilution fields

- Processed seismic events

- Known nuclear installation locations
Bayes’ theorem

\[p(\theta| x, M) = \frac{p(\theta|M)p(x|\theta, M)}{\int_{\Theta} p(\theta|M)p(x|\theta, M)} \]

Parameters

Data

Prior

Likelihood

Normalizing constant – can be ignored

Model:

Parameter structure, ATM, decay, sensor response, noise, uncertainty

Continuous values: Probability density – not probability.
Parameterization and Priors – θ, p($\theta|M$)

- **Location**
 - Uniform over earth’s surface

- **Time**
 - Uniform (two weeks)

- **Duration** (log)
 - Uniform (log) with cap on end time

- **Number of nuclides** for each isotope (log)
 - Normal prior (on logN)
 - Huge geometric uncertainty
 - Maximum of 10^{40} (10^{44} atoms in the atmosphere)

- **Repeat R times**
 - So far R = 1 or 2 on desktop hardware

- **m**
 - Met/ATM model linear interpolator if 2 available
RN Sensor Likelihoods: normal and max value

- Calculate isotope activity c_{ij} from tri-linear interpolation of CTBTO dilution field for each release and decay model.
- Sum activities for multiple releases $c_j = \sum_i c_{ij}$.

$$\ln[p(x_j|c_j)] = -\frac{1}{2} \left(\frac{x_j - c_j}{\sigma_j} \right)^2$$

$$\ln[p(x_j|c_j)] = \begin{cases}
-\frac{1}{2} \left(\frac{c_j - x_j}{x_j} \right)^2 & c_j > x_j \\
0 & c_j \leq x_j
\end{cases}$$
Space/Time Information Mixture Model

- Mixture model over 2D space and 1D time
 - 0.5 shared equally between
 - Potential emitter locations
 - 2D normal (isotropic, distance)
 - Extruded uniformly through time
 - Seismic events
 - 3D normal (correlated, strike angle)
 - 0.5 spread uniformly over Earth’s surface and two weeks
- Apply directly to location/time parameters
 - no modelling required
Sampling – densities to probabilities

• Atmospheric transport is an uncertain, diffusive process
 – A “best estimate” of the parameters is inappropriate
 – Uncertainty in parameters must be quantified

• Markov Chain Monte Carlo (MCMC)
 – Output is simple:
 • Count number of sampled parameter sets in regions of interest
 – Ratios (betting odds)
 – Histograms
NPE 2013 Posterior Marginal Location Inference
NPE2013 Activity and Time Marginals

131mXe Log$_{10}$ Bq

133Xe Log$_{10}$ Bq

131I Log$_{10}$ Bq

133mXe Log$_{10}$ Bq

135Xe Log$_{10}$ Bq

Release time / days
Fukushima 133I Entire Network for 2 Weeks After

Real data (minus JPP38)

More isotope data makes it worse
What has gone wrong?

• Check the modelling provided by CTBTO
 – Adjoint modelling
 • ~2000 collection periods over 2 weeks from ~7 million source locations/times (1°x1°x3hours)
 • Release at collector during collection period, reverse time, reverse wind vectors, keep turbulent diffusion positive, query model on source space/time grid
 • ~2000 model runs rather than ~7 million
ECMWF/Flexpart Integrated Dilution for 1st 133I detection
NCEP/Flexpart Integrated Dilution for 1st 133I detection
What is the cause of the modelling error?

- Incorrect modelled wind vector fields as input?
 - Not according to the German NDC
 - Wind fields around the time of the Fukushima reactor accident were well modelled.
 - German NDC forward modelling indicates material does reach RUP60
 - At the appropriate time

- Adjoint models ≠ forward models?
 - But! NPE2013 simulated data was forward modelled
 - Inference using adjoint modelling worked
 - Is the problem at the edge of the plume?
Future work

• Investigate forward/adjoint modelling discrepancy
 – UK Met Office NAME-on-JASMIN service
 • Negotiating a research license

• Can discrepancy be probabilistically modelled?
 – maintain inference speed
 • Cannot afford forward modelling in sampling algorithm
 • Billions of samples (currently lookup and interpolation)
 – provide appropriate uncertainty in modelling to provide uncertainty in reconstructed parameters
Questions?
Basic ATM Uncertainty

• For each sensor with multiple isotope measurements:
 – s' is the true, unobserved dilution

\[
p(x|\theta, M) = \int_0^\infty p(s'|\theta, M(SRS)) \prod_i p\left(x_i\left| s', \text{decay}_i, \theta \right. \right) ds'
\]

• Using a log-normal
 – Geometric uncertainty of 1000
 – Placeholder
 • Investigations underway