Selecting Targets for OSI Drilling to Obtain Radioactive Samples: Based on Test Site Observations

Ward Hawkins

Los Alamos National Laboratory

June 2015

The views expressed here do not necessarily reflect the opinion of the United States Government, the U. S. Department of Energy, or the Los Alamos National Laboratory
“Drilling to obtain radioactive samples”

- Target must be identified
- Drilling operator is engaged
- Permits and agreements
- Procedures have been defined

Executive Council approval is required.
Approval will depend on many issues

- OSI evidence (visual, geophysical, radionuclide) indicates a sampling target
- Operational activities can be accomplished
- Inspection Team proposal to Executive Council through Director General to conduct drilling
- Requires majority decision

Must be a reasonable opportunity for success.
What constitutes “a reasonable opportunity for success”

1) Remote Event Detection
 - IMS/IDC
 - Other

2) Wide area search
 - Overflight/Visual Orientation
 - Visual Field Checks
 - SAMS
 - RN Monitoring

3) Location Investigations
 - Visual surveys
 - SAMS
 - CPT (?)
 - RN Surveys

4) Detailed site examination
 - Focused Visual investigation
 - CPT
 - RN Sampling
 - Drilling?

A convincing sampling target.
Potential Sampling Target

Target Diameter: Puddle = 1/6 Cavity
10 kt = 6 m
50 kt = 10 m
100 kt = 14 m

1 - Prompt injection
2 - Melt puddle
3 - Fractionated volatiles
4 - Atmospheric pumping
5 - Groundwater movement

Not to Scale
Chemical Species

- **Non-volatile** (refractory) species condense as soon as the melt is formed.
- **Semi-volatile** species which are absorbed or adsorbed on particles as the temperature approaches ambient.
- **Volatile** species which condense only below ambient temperatures. Extreme examples are the noble gases.
Timing and Location

- Non-volatile radionuclides are concentrated in the cavity melt puddle
- Volatile radionuclides can migrate into chimney and damage zone
- Volatile radionuclides have short half-lives and provide isotopic ratios best for timing
- Longer half-life radionuclides affected by fractionation and dilution
“Drilling to obtain radioactive samples.”

Concept of Operations

- **What?**
 - Collect adequate and controlled samples.

- **How?**
 - Safely (personnel and environment)
 - Rapidly (existing licenses, etc.)
 - Efficiently (compact; self contained, minimal support, etc.)
 - Confidentially (protect information)

- **Who?**
 - Contract drilling company (pre-approved by PTS?)
Typical Vertical UGT Post-Shot Drill Back

1. Drill Rig
2. Cellar
3. Chimney & Puddle Glass
4. Side Track Hole
5. Primary Hole

Vertical Test
Post-Test Drilling
Gamma Logging to Select Sampling Points

Gamma Logs

Higher Sensitivity

Lower Sensitivity

Sample Activity

RN 1

RN 2

RN 3

RN 4

~Cavity Bottom
Radionuclide Migration in groundwater from Cheshire Test

Heat from the explosion moved radionuclides upward toward transmissive zones.

The radionuclides were discovered in a hole drilled 300m down gradient 11 years later.

Sawyer, Thompson and Smith, 1999
Sample Handling

- Safety Mandatory
- Sample Security Issue
- Packaging
- Sealing and Tagging
- Chain of Custody
Summary

• Target definition depends on:
 – Explosive yield
 – Geology
 – Hydrology
 – Timing
 – Equipment

• Historically, drilling for diagnostic radionuclides was difficult
 – Need continuous gamma logging
 – Blow-out prevention critical
 – Drill-string collar important for slant/directional drilling
 – Puddle materials difficult to texturally distinguish

• Optimized chance of success by understanding the potential distribution and fate of radionuclides.
Summary

• Drilling for OSI samples is similar to historical post-shot operations but not exactly the same

• Drilling to intersect chimney has higher success probability than that of finding the puddle

• Need to specify equipment such that all OSI situations can be addressed.

• Drilling capabilities and experience of contractors vary—special capabilities will be required