Latest Development on MARDS – an Argon-37 Detection System

LI Wei, YAN Zhaotong, XIANG Yongchun, WANG Hongxia, XIANG Qingpei, ZE Rende, LIU Qiang, GONG Jian

Institute of Nuclear Physics and Chemistry
China Academy of Engineering Physics

SnT2015
Vienna, June 2015
Outline

- Application background
- History
- Primary objectives of improvement
- Current status of the MARDS system
- Field deployment in the IFE14
- Some thoughts of the future work
Application background

• 37Ar is a definitive and unambiguous indicator of an underground nuclear explosion (UNE).

 – 37Ar is produced underground by neutron activation of Calcium by the reaction 40Ca(n,α)37Ar.

 – long half-life of 35 days

 – low natural activities in subsoil gas of 1-100 mBq/m3.(Robin A. Riedmann and Roland Purschert, 2011)
History

• To support technology for the On-site Inspection, the INPC proposed the 37Ar detection project, in the early 1990’s.

• 37Ar signature was verified during the last Chinese UNEs. Subsoil gas sample in two months after the explosion showed that the activity was in the order of 10^2-10^7 Bq/m3.
History

Prototype system, 1999

MARDS-I, 2003

MARDS-IA, 2007

MARDS-II, 2013
Primary objectives of improvement

• To decrease the Minimum Detection Concentration (MDC) for 37Ar

• To enhance suitability for the field deployment
Minimum Detection Concentration (MDC) for 37Ar

$$MDC = \frac{4.66 \times \sqrt{n_b} \times t}{V \times \eta \times \varepsilon \times I \times t}$$

- MDC – Minimum detection concentration for 37Ar in Bq/m³;
- n_b – Background count rate in cps;
- t – counting time in s;
- V – Sampling Volume in m³;
- η – Argon yield;
- ε – counting efficiency (~ 0.9);
- I – Branch ratio (~ 0.9).

- Decrease the background count rate
- Increase the sampling volume
- Prolong the counting time
Minimum Detection Concentration (MDC) for 37Ar

$$MDC = \frac{4.66 \times \sqrt{n_b \times t}}{V \times \eta \times \varepsilon \times I \times t}$$

- MDC – Minimum detection concentration for 37Ar in Bq/m³;
- n_b – Background count rate in cps;
- t – counting time in s;
- V – Sampling Volume in m³;
- η – Argon yield;
- ε – counting efficiency (~ 0.9);
- I – Branch ratio (~ 0.9).

- Sampling volume:
 - Ar: 0.934%
 - Constrained by the volume of proportional counter
 - No space to increase the sample volume dramatically
 - 200 L \rightarrow 400 L
 - Yield: 50%
 - \sim 2 L purified Argon

SnT2015, Vienna, June 2015
Minimum Detection Concentration (MDC) for 37Ar

$$MDC = \frac{4.66 \times \sqrt{n_b \times t}}{V \times \eta \times \varepsilon \times I \times t}$$

- **MDC** – Minimum detection concentration for 37Ar in Bq/m³;
- n_b – Background count rate in cps;
- t – counting time in s;
- V – Sampling Volume in m³;
- η – Argon yield;
- ε – counting efficiency (\sim 0.9);
- I – Branch ratio (\sim 0.9).

- **Background count rate**
 - External gamma rays
 - Counter material
 - 39Ar

<table>
<thead>
<tr>
<th></th>
<th>Naked counter</th>
<th>Shield + anticoincidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total count rate / cps</td>
<td>8</td>
<td>0.4</td>
</tr>
<tr>
<td>Count rate in ROI /cps</td>
<td>0.6</td>
<td>0.03</td>
</tr>
</tbody>
</table>

SnT2015, Vienna, June 2015
Minimum Detection Concentration (MDC) for 37Ar

\[\text{MDC} = \frac{4.66 \times \sqrt{n_b \times t}}{V \times \eta \times \varepsilon \times l \times t} \]

- **MDC** – Minimum detection concentration for 37Ar in Bq/m3;
- n_b – Background count rate in cps;
- t – counting time in s;
- V – Sampling Volume in m3;
- η – Argon yield;
- ε – counting efficiency (~ 0.9);
- l – Branch ratio (~ 0.9).

Counting time
- Sampling volume: 400 L
- Argon yield: 50%
- Background count rate: 0.03 s$^{-1}$
Suitability for the field deployment

• Followed the operation concept of the OSI, optimize the system design
 – Vehicle mounted → operation in BoO
 – Integrated → modularized
Suitability for the field deployment

- Throughput
 - Temperature swing adsorption (TSA)
 - Pressure swing adsorption (PSA)
 - Decrease the regeneration time from 8 hours to 2 hours
 - Continuous operation by 2 traps alternate use
 - 1 sample per 2 hours
 - 4 samples per 8 hours
Suitability for the field deployment

• Logistic requirements
 – Pressure swing adsorption (PSA)
 – No coolant and heater needed during the sample process
 – Lower power consumption
Main specifications of MARDS system

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Prototype system</th>
<th>MARDS-I</th>
<th>MARDS-IA</th>
<th>MARDS-II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development year</td>
<td>1999</td>
<td>2003</td>
<td>2007</td>
<td>2013</td>
</tr>
<tr>
<td>Sampling volume</td>
<td>200 L</td>
<td>200 L</td>
<td>200 L</td>
<td>400 L</td>
</tr>
<tr>
<td>Argon yield</td>
<td>40%</td>
<td>70%</td>
<td>70%</td>
<td>50%</td>
</tr>
<tr>
<td>Sample process time</td>
<td>3.5 h</td>
<td>2.5 h</td>
<td>3 h</td>
<td>2 h</td>
</tr>
<tr>
<td>Regeneration time</td>
<td>8 h</td>
<td>8 h</td>
<td>8 h</td>
<td>2 h</td>
</tr>
<tr>
<td>Background count rate</td>
<td>4 s⁻¹</td>
<td>0.2 s⁻¹</td>
<td>0.03 s⁻¹</td>
<td>0.03 s⁻¹</td>
</tr>
<tr>
<td>MDC for Ar-37 (10 hours counting time)</td>
<td>800 mBq/m³</td>
<td>100 mBq/m³</td>
<td>38 mBq/m³</td>
<td>26 Bq/m³</td>
</tr>
<tr>
<td>Coolant</td>
<td>Liquid nitrogen</td>
<td>Liquid nitrogen</td>
<td>Liquid nitrogen</td>
<td>None</td>
</tr>
<tr>
<td>Operation mode</td>
<td>Manual</td>
<td>Semi-automatic</td>
<td>Automatic</td>
<td>Automatic</td>
</tr>
</tbody>
</table>

SnT2015, Vienna, June 2015
Basic principle of Argon separation

- H₂O, CO₂
- Separation of Ar from remain N₂

Diagram:
- Sampling Pump
- Flow Meter
- Air dryer unit
- Subsoil gas or atmosphere
- Nitrogen Separation Unit
- Deoxidation Unit
- Argon Separation Unit
- Argon Collection Unit
- Vacuum Pump
- Counter

Most of N₂
Most of O₂
Layout of the Argon process units
Field exercises

- IFE08, MARDS-IA
- NG09, MARDS-IA
- IFE14, MARDS-II
IFE08, MARDS-IA
NG09, MARDS-IA
IFE14, MARDS-II
• 10 samples
 – 2 BoO air samples
 – 3 SAUNA exhaust gas samples
 – 5 subsoil gas samples from the field
• 37Ar: \sim350 mBq/m3
• Spike sample
Some thoughts of the future work

• System performance
 – From the laboratory instrument to the inspection equipment
 • Reliability
 • Maintainability
 – Fully operated by the trained surrogate inspector
Some thoughts of the future work

- Background concentration of 37Ar in subsoil gas
- Measurement and estimation, Roland Purschert, University of Bern
 - Measured natural 37Ar activities in soil air range over 2 orders of magnitude between <3.1 to 120 mBq/m3.
 - In high altitude soils, with large amounts of Calcium and with low gas permeability, 37Ar activities may reach values up to 1 Bq/m3.
 - 3 orders, 1 mBq/m3 to 1 Bq/m3.
- Investigation to understand the background concentration of 37Ar, compared with the understanding of the background of radioxenon.
• Thank J. S. Elisabeth WIESLANDER and Kirill KHRUSTALEV for fruitful discussions and comments.
Thanks for you attention!