Numerical study of acoustic waves around and inside an underground cavity

CTBTO Young Scientist Research Award 2014
WWTF project 2015

Sofi Esterhazy, Ilaria Perugia, Joachim Schöberl, Götz Bokelmann
Wave animation

Scattered wave field

Zoom
Objectives

- Contribution to the **scientific groundwork** for OSI

- Numerical investigation
 - Development of new method for elastic-acoustic problems
 - Improvement of computational algorithms

- Applied investigation
 - Define characteristics of wave field interactions
 - Improve and design methods and experiments
On-Site Inspection

Request of OSI

Launch

Equipment - Training/Field tests - OSI Action Plan

<table>
<thead>
<tr>
<th>Techniques</th>
<th>IFE08</th>
<th>IFE14</th>
<th>Techniques</th>
<th>IFE08</th>
<th>IFE14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Observations</td>
<td>●</td>
<td>●</td>
<td>Environmental measurements</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Seismological aftershock monitoring</td>
<td>●</td>
<td>●</td>
<td>Electrical conductivity measurements</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Gamma radiation monitoring</td>
<td>●</td>
<td>●</td>
<td>Air-borne gamma spectroscopy</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Magnetic field mapping</td>
<td>●</td>
<td>●</td>
<td>Active seismic survey</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Gravitational field mapping</td>
<td>●</td>
<td>●</td>
<td>Resonance seismometry</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Multi-spectral imaging</td>
<td>●</td>
<td>●</td>
<td>Drilling</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Argon-37 and radioxenon measurement</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: ● Tested, ○ Partly tested, ● Not tested
Seismic Methods

Subsurface structure after an UNE

(Adushkin & Spivak, 2004)

Simplified model

Sources:
- Passive seismic sources: Body waves, Surface waves, Noise
- Active seismic sources: Vibroseis, Explosions
Underling physics

- **Acoustic wave equation** in medium Ω_1

- **Elastic wave equation** in medium Ω_2

- Time harmonic cases:
 - Spherical point source
 - Plane wave sources
Underling physics

- **Acoustic wave equation** in medium Ω_1

- **Elastic wave equation** in medium Ω_2
 \Rightarrow Focus on compressional waves

- Time harmonic cases:

 Spherical point source

 Plane wave sources
In/Out Scattering

Separation into the incident and scattered wave field:

\[p = p_{inc} + p_{scat} \]

⇒ Better inside to the wave field interaction
Numerical results (1)

- **Scattered wave field** from a plane wave from the bottom left with \(f = 16\text{Hz} \)
- Cavity at depth \(D = 600\text{m} \) and diameter \(d = 60\text{m} \)
- Material parameters:
 \[v_1 = 300\text{m/s}, \rho_1 = 1\text{kg/m}^{-3} \]
 \[v_2 = 3000\text{m/s}, \rho_2 = 1000\text{kg/m}^{-3} \]
Numerical results (1)

- **Scattered wave field** from a plane wave from the bottom left with $f = 16\text{Hz}$
- Cavity at depth $D = 600\text{m}$ and diameter $d = 60\text{m}$
- Material parameters:
 \[v_1 = 300\text{m/s}, \rho_1 = 1\text{kg/m}^3 \]
 \[v_2 = 3000\text{m/s}, \rho_2 = 1000\text{kg/m}^3 \]

Netgen/NGsolve
- Automatic 2D/3D adaptive mesh generator
- High-order Finite Element Method
- Applicable for Heat-flow, Acoustics, Elasticity, Navier-Stokes, Maxwell, etc.
- Open-source, C++, MPI – parallel, Python Plugin
Numerical Results (2)

- Scattering profile
- No surface

- Plane wave from the bottom with $f = 16\text{Hz}$
- Cavity at depth $D = 600\text{m}$ and diameter $d = 60\text{m}$
- Material parameters:
 \[v_1 = 3000\text{m/s}, \rho_1 = 1000\text{kg/m}^3, \quad v_2 = 300\text{m/s}, \rho_2 = 1\text{kg/m}^3 \]
Numerical Results (2)

- Scattering profile
- No surface

![Total field and Scattered field images]

- Plane wave from the bottom with $f = 16\text{Hz}$
- Cavity at depth $D = 600\text{m}$ and diameter $d = 60\text{m}$
- Material parameters:
 \[\nu_1 = 3000\text{m/s}, \rho_1 = 1000\text{kg/m}^3, \nu_2 = 300\text{m/s}, \rho_2 = 1\text{kg/m}^3 \]
Express the incident and the scattered wave field by linear combinations of **spherical vectors** and solve a system of linear equations

\[
U_0 = \sum_{l \geq 0} \{ j_{l+1}(\omega \alpha_2 r) Y_{l0}^+ - j_{l-1}(\omega \alpha_2 r) Y_{l0}^- \} \exp \{-i[\pi/2(l + 1)]\}
\]

\[
U_1 = \sum_{l \geq 0} \left\{ a_l^{(1)} j_{l+1}(\omega \alpha_1 r) + [b_l^{(1)}]_{l+1}(\omega \beta_1 r) \right\} Y_{l0}^+ \\
+ \left[-a_l^{(1)} j_{l-1}(\omega \alpha_1 r) + (l + 1) b_l^{(1)} j_{l-1}(\omega \beta_1 r) \right] Y_{l0}^- \exp \{-i[\pi/2(l + 1)]\}
\]

\[
U_2 = \sum_{l \geq 0} \left\{ a_l^{(2)} h_{l+1}(\omega \alpha_2 r) + [b_l^{(2)}]_{l+1}(\omega \beta_2 r) \right\} Y_{l0}^+ \\
+ \left[-a_l^{(2)} h_{l-1}(\omega \alpha_2 r) + (l + 1) b_l^{(2)} h_{l-1}(\omega \beta_2 r) \right] Y_{l0}^- \exp \{-i[\pi/2(l + 1)]\}
\]

For each index \(l \) find the coefficients to match at the boundary \(r = R \)
Scattering cross sections
(Valeri Korneev, Geophys. J. Int. (1993))

- $S = E_{in}/E_{scat}$. . . Ratio between scattered and incoming energy flow
- $kR = U/\lambda$. . . Ratio between cavity circumference and incident wavelength

⇒ Modeling the cavity as an **acoustic inclusion** is crucial to resonance seismometry
Summary & Outlook

- Project distinguished by the Young Scientists Research Award
- Wave propagation with focus on acoustic case
- Identification of underlying physics
- Investigation of characteristics (analytically and numerically)
- Set up of an efficient numerical code
- Extension to full elastic wave field
- Extension to 3D
- Numerical improvement and Post-processing
- Incorporation of our findings into the practices of an OSI
Summary & Outlook

- Project distinguished by the Young Scientists Research Award
- Wave propagation with focus on acoustic case
- Identification of underlying physics
- Investigation of characteristics (analytically and numerically)
- Set up of an efficient numerical code
- Extension to full elastic wave field
- Extension to 3D
- Numerical improvement and Post-processing
- Incorporation of our findings into the practices of an OSI

Thank you!
In/Out Separation

- Ansatz \(p = p_{inc} + p_{scat} \)
- \(p_{inc} \) solves
 \[
 \nabla^2 p_{inc} + k_1 p_{inc} = \delta(x - x_0) + \text{rad. cond. for } \|x - x_0\| \to \infty
 \]
- The remaining unknown \(p_{scat} \) is then the solution of
 \[
 \nabla \cdot \left(\frac{1}{\rho_1} \nabla p_{scat} \right) + \frac{k_1}{\rho_1} p_{scat} = 0 \quad \text{in } \Omega_2
 \]
 \[
 \nabla \cdot \left(\frac{1}{\rho_2} \nabla p_{scat} \right) + \frac{k_2}{\rho_2} p_{scat} = \frac{1}{\rho_2} (k_1 - k_2) p_{inc} \quad \text{in } \Omega_1
 \]
 \[
 p_{scat} = -p_{inc} \quad \text{on } \Gamma
 \]

 + radiation condition for \(r \to \infty \)
Numerical method

- High-Order Finite Element Method
 - Can handle highly complex, irregularly shaped geometries
 - Tends to exponentially increase the accuracy of the computations

- Software
 - **Netgen**: Automatic 2D/3D tetrahedral adaptive mesh generator
 - **Ngsolve**: Applicable for Heat-flow, Acoustics, Elasticity, Navier-Stokes, Maxwell, etc.
 - Open-source, C++, MPI – parallel, Python Plugin

- Hardware
 - Internal server with 48 cores
 - Vienna Scientific Cluster 3 - 140/2020 dual nodes à 8 cores