Optimization of the network coverage of the IMS noble gas component.

PREPARATORY COMMISSION OF THE CTBTO
SCIENCE AND TECHNOLOGY 2015

25 JUNE 2015, VIENNA, AUSTRIA

MICHAEL SCHOEPPNER
PROGRAM ON SCIENCE AND GLOBAL SECURITY,
PRINCETON UNIVERSITY
SCHOEPPNER@PRINCETON.EDU
INTERNATIONAL MONITORING SYSTEM

Noble gas network – 39+1 stations
Standard modelling conditions

- 1kt yield underground / underwater

- Underground
 1% release at maximum of Xe-133 activity (after about 100h)

- Underwater
 100% release of activity within 3h

Source: Kalinowski, 2011
Standard modelling conditions

- 1kt yield underground / underwater
- Xe-133 with half-life of 5.25 days
- Background emissions from 200 NPP and 5 MIPF
- 14 days transport time
- 40 noble gas stations

► Atmospheric transport modelling
 with Flexpart 8.23 and 0.5deg NCEP data
IMS NOBLE GAS NETWORK
Purpose and provisions

1. **Detection** of unusual radioxenon emissions

 ► **PROVISION:**

 Any release of radioxenon should reach a monitoring station.

2. **Localization** of event through inverse modelling

 ► **PROVISION:**

 More samples lead to better localization capability.
Standard conditions

Average detection probability

- 100%
- 75%
- 50%
- 25%
- 0%

Average number of samples

- 10 +
- 100%
- 75%
- 50%
- 25%
- 0%

Regional gaps in the network coverage. Detection probability and localization capability do not always correlate.
Reducing the background would greatly increase regional capabilities.
Increased yields – 20 kt TNT

Higher yields (/higher leakage) greatly increases the detection and localization capability.
Transport time – 7 days

In many locations more detections are to be expected more than 7 days after release.
Other radioxenon isotopes

Other isotopes are less likely to be detected, but...
Other radioxenon isotopes at 20 kt TNT yield

For higher yields (/leakage) other isotopes can be a realistic option.
INTERNATIONAL MONITORING SYSTEM
Noble gas & radionuclide network
Extended network – 60 stations

The 20 equatorial RN stations would fill the biggest NG detection gaps.
Extended network – 80 stations

Average detection probability

Most mid-latitude RN stations are in regions of already good NG coverage.
Summary and Recommendations

- Differentiation between detection probability and localisation capability
- Good coverage for most parts of the globe
 - Gaps due to background and equatorial winds
- Other radioxenon isotopes are secondary means (needed for activity ratios)
- Last detection of event can take time (transport time)
- Extension of 20 stations would yield most benefit

- Scenarios
 - With and without background
 - 1kt and 20kt yields

- 7 days and 14 days transport time
- Four radioxenon isotopes
- 40, 60 and 80 stations
Appendix

60 stations with background

80 stations with background
Appendix

100kt without background

100kt with background