1. Field evidence of topographical effects at the Roselend Natural Laboratory

Experimental set-up

Set-up of a tarp (3x3m²) located close to a 7 m height vertical cliff, in fractured crystalline rocks.

Is there an influence of a near-by cliff on 222Rn dynamics below tarps?

2. Numerical study of radon dynamics below a tarp close to a cliff

Topography can induce gas flow.

(Thorstenson et al., 1998)

Gas flow and transport modeling with the NUFT code.

222Rn is taken as a proxy to quantify changes in dynamics due to slope or cliff.

- Single gas phase
- Homogeneous porous medium
- 222Rn production in the sub-surface
- Barometric pumping at the surface

- Reduced 222Rn activity in the first meters near the cliff edge due to increased ventilation by the atmosphere.
- 222Rn dynamics below the tarps controlled by barometric pumping.
Other mechanism (e.g. water infiltration) needed to explain field data.
- Local anomaly in 222Rn background below tarps.
- Influence of gas sampling and tarp sealing?

3. Is radon dynamics in a borehole modified by wind pumping?

Set-up for numerical models

No attenuation of P_{\text{bar}} fluctuations during wind loading.

Limited influence (<1%) of wind loading on 222Rn activity at depth.

Pressure (a) and 222Rn (b) in at 1 m (black) and 10 m (red) boreholes at 1 m distance from a cliff. Periods of positive (continuous line) or negative (dashed line) wind loading are in grey.

4. Conclusions

- Models show small pressure perturbation in boreholes from wind loading.
- Sub-surface gas dynamics shows strong variability due not only to barometric pumping but also to local topography and other transport mechanisms.
- Borehole / tarp sampling less than few meters from a cliff could lead to dilution by atmospheric air.

The first author was funded by CTBTO Young Scientist Research Award.

The LINL contribution to this work was supported by the Office of Nuclear Verification (NA-243), US Department of Energy and performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344.

The views expressed here do not necessarily reflect the opinion of the United States Government, the United States Department of Energy, or Lawrence Livermore National Laboratory.

Bibliography

